Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities

Identifieur interne : 000C71 ( Russie/Analysis ); précédent : 000C70; suivant : 000C72

Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities

Auteurs : RBID : Pascal:99-0384996

Descripteurs français

English descriptors

Abstract

Recent theoretical and experimental work on linear exciton-light coupling in single and coupled semiconductor microcavities is reviewed: emphasis is given to angular dispersion and polarization effects in the strong-coupling regime, where cavity-polariton states are formed. The theoretical formulation is based on semiclassical theory. The energy of single-cavity modes is determined by the Fabry-Perot frequency ωc as well as by the center of the stop band ωs of the dielectric mirrors; the phase delay in the dielectric mirrors carries a nontrivial angle- and polarization dependence. The polarization splitting of cavity modes depends on the mismatch between ωc and ωs, and increases with internal angle as sin2θeff. Interaction between the cavity mode and quantum-well (QW) excitons is described at each angle by a two-oscillator model, whose parameters are expressed in terms of microscopic quantities. Weak and strong coupling regimes and the formation of cavity polaritons are described. Comparison with experimental results on a GaAs-based cavity with In0.13Ga0.87As QWs shows that a quantitative understanding of polariton dispersion and polarization splitting has been achieved. Coupling of two identical cavities thorugh a central dielectric mirror induces an optical splitting between symmetric and antisymmetric modes. When QW excitons are embedded in both cavities at antinode positions, the system behaves as four coupled oscillators, leading to a splitting of otherwise degenerate exciton states and to separate anticrossing of symmetric and antisymmetric modes. These features are confirmed by experimental results on coupled GaAs cavities with In0.06Ga0.94As QWs. An analysis of reflectivity lineshapes requires the inclusion of the effect of resonance narrowing of cavity polaritons. Finally, the polarization splitting in a coupled cavity depends both on the single-cavity factors and on the angle- and polarization dependence of the optical coupling between the cavities. Inclusion of all these effects provides a good description of the experimental findings. © 1999 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:99-0384996

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities</title>
<author>
<name sortKey="Panzarini, G" uniqKey="Panzarini G">G. Panzarini</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Instituto Nazionale per la Fisica della Materia-Dipartimento di Fisica A. Volta, Universita di Pavia, via Bassi 6, 27100 Pavia, Italy</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Instituto Nazionale per la Fisica della Materia-Dipartimento di Fisica A. Volta, Universita di Pavia, via Bassi 6, 27100 Pavia</wicri:regionArea>
<wicri:noRegion>27100 Pavia</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194024 St. Petersburg, Russia</s1>
</inist:fA14>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194024 St. Petersburg</wicri:regionArea>
<wicri:noRegion>194024 St. Petersburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Andreani, L C" uniqKey="Andreani L">L. C. Andreani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Instituto Nazionale per la Fisica della Materia-Dipartimento di Fisica A. Volta, Universita di Pavia, via Bassi 6, 27100 Pavia, Italy</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Instituto Nazionale per la Fisica della Materia-Dipartimento di Fisica A. Volta, Universita di Pavia, via Bassi 6, 27100 Pavia</wicri:regionArea>
<wicri:noRegion>27100 Pavia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Armitage, A" uniqKey="Armitage A">A. Armitage</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, University of Sheffield, Sheffield S3 7RH, United Kingdom</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Physics, University of Sheffield, Sheffield S3 7RH</wicri:regionArea>
<wicri:noRegion>Sheffield S3 7RH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Baxter, D" uniqKey="Baxter D">D. Baxter</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, University of Sheffield, Sheffield S3 7RH, United Kingdom</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Physics, University of Sheffield, Sheffield S3 7RH</wicri:regionArea>
<wicri:noRegion>Sheffield S3 7RH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Skolnick, M S" uniqKey="Skolnick M">M. S. Skolnick</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, University of Sheffield, Sheffield S3 7RH, United Kingdom</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Physics, University of Sheffield, Sheffield S3 7RH</wicri:regionArea>
<wicri:noRegion>Sheffield S3 7RH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Astratov, V N" uniqKey="Astratov V">V. N. Astratov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, University of Sheffield, Sheffield S3 7RH, United Kingdom</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Physics, University of Sheffield, Sheffield S3 7RH</wicri:regionArea>
<wicri:noRegion>Sheffield S3 7RH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Roberts, J S" uniqKey="Roberts J">J. S. Roberts</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, University of Sheffield, Sheffield S3 7RH, United Kingdom</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Physics, University of Sheffield, Sheffield S3 7RH</wicri:regionArea>
<wicri:noRegion>Sheffield S3 7RH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kavokin, A V" uniqKey="Kavokin A">A. V. Kavokin</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>LASMEA, Universite Blaise Pascal Clermont II, Complexe Scientifique des Cezeaux, 24, Avenue des Landais, 63177 Aubiere Cedex, France</s1>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">France</country>
<wicri:regionArea>LASMEA, Universite Blaise Pascal Clermont II, Complexe Scientifique des Cezeaux, 24, Avenue des Landais, 63177 Aubiere Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne</region>
<settlement type="city">Aubiere</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vladimirova, M R" uniqKey="Vladimirova M">M. R. Vladimirova</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>LASMEA, Universite Blaise Pascal Clermont II, Complexe Scientifique des Cezeaux, 24, Avenue des Landais, 63177 Aubiere Cedex, France</s1>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">France</country>
<wicri:regionArea>LASMEA, Universite Blaise Pascal Clermont II, Complexe Scientifique des Cezeaux, 24, Avenue des Landais, 63177 Aubiere Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne</region>
<settlement type="city">Aubiere</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kaliteevski, M A" uniqKey="Kaliteevski M">M. A. Kaliteevski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Instituto Nazionale per la Fisica della Materia-Dipartimento di Fisica A. Volta, Universita di Pavia, via Bassi 6, 27100 Pavia, Italy</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Instituto Nazionale per la Fisica della Materia-Dipartimento di Fisica A. Volta, Universita di Pavia, via Bassi 6, 27100 Pavia</wicri:regionArea>
<wicri:noRegion>27100 Pavia</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">99-0384996</idno>
<date when="1999-08">1999-08</date>
<idno type="stanalyst">PASCAL 99-0384996 AIP</idno>
<idno type="RBID">Pascal:99-0384996</idno>
<idno type="wicri:Area/Main/Corpus">014736</idno>
<idno type="wicri:Area/Main/Repository">013D45</idno>
<idno type="wicri:Area/Russie/Extraction">000C71</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1063-7834</idno>
<title level="j" type="abbreviated">Phys. solid state</title>
<title level="j" type="main">Physics of the solid state</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cavity resonators</term>
<term>Excitons</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Line widths</term>
<term>Mirrors</term>
<term>Optical polarization</term>
<term>Polaritons</term>
<term>Reflectivity</term>
<term>Reviews</term>
<term>Semiconductor quantum wells</term>
<term>Theoretical study</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7866F</term>
<term>7136</term>
<term>7135</term>
<term>7320M</term>
<term>7320D</term>
<term>Etude expérimentale</term>
<term>Etude théorique</term>
<term>Polarisation optique</term>
<term>Polariton</term>
<term>Exciton</term>
<term>Puits quantique semiconducteur</term>
<term>Indium composé</term>
<term>Gallium arséniure</term>
<term>Semiconducteur III-V</term>
<term>Article synthèse</term>
<term>Miroir</term>
<term>Résonateur cavité</term>
<term>Facteur réflexion</term>
<term>Largeur raie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recent theoretical and experimental work on linear exciton-light coupling in single and coupled semiconductor microcavities is reviewed: emphasis is given to angular dispersion and polarization effects in the strong-coupling regime, where cavity-polariton states are formed. The theoretical formulation is based on semiclassical theory. The energy of single-cavity modes is determined by the Fabry-Perot frequency ω
<sub>c</sub>
as well as by the center of the stop band ω
<sub>s</sub>
of the dielectric mirrors; the phase delay in the dielectric mirrors carries a nontrivial angle- and polarization dependence. The polarization splitting of cavity modes depends on the mismatch between ω
<sub>c</sub>
and ω
<sub>s</sub>
, and increases with internal angle as sin
<sup>2</sup>
θ
<sub>eff</sub>
. Interaction between the cavity mode and quantum-well (QW) excitons is described at each angle by a two-oscillator model, whose parameters are expressed in terms of microscopic quantities. Weak and strong coupling regimes and the formation of cavity polaritons are described. Comparison with experimental results on a GaAs-based cavity with In
<sub>0.13</sub>
Ga
<sub>0.87</sub>
As QWs shows that a quantitative understanding of polariton dispersion and polarization splitting has been achieved. Coupling of two identical cavities thorugh a central dielectric mirror induces an optical splitting between symmetric and antisymmetric modes. When QW excitons are embedded in both cavities at antinode positions, the system behaves as four coupled oscillators, leading to a splitting of otherwise degenerate exciton states and to separate anticrossing of symmetric and antisymmetric modes. These features are confirmed by experimental results on coupled GaAs cavities with In
<sub>0.06</sub>
Ga
<sub>0.94</sub>
As QWs. An analysis of reflectivity lineshapes requires the inclusion of the effect of resonance narrowing of cavity polaritons. Finally, the polarization splitting in a coupled cavity depends both on the single-cavity factors and on the angle- and polarization dependence of the optical coupling between the cavities. Inclusion of all these effects provides a good description of the experimental findings. © 1999 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1063-7834</s0>
</fA01>
<fA02 i1="01">
<s0>PSOSED</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. solid state</s0>
</fA03>
<fA05>
<s2>41</s2>
</fA05>
<fA06>
<s2>8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PANZARINI (G.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ANDREANI (L. C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ARMITAGE (A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BAXTER (D.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SKOLNICK (M. S.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ASTRATOV (V. N.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ROBERTS (J. S.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>KAVOKIN (A. V.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>VLADIMIROVA (M. R.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>KALITEEVSKI (M. A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Instituto Nazionale per la Fisica della Materia-Dipartimento di Fisica A. Volta, Universita di Pavia, via Bassi 6, 27100 Pavia, Italy</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, University of Sheffield, Sheffield S3 7RH, United Kingdom</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>LASMEA, Universite Blaise Pascal Clermont II, Complexe Scientifique des Cezeaux, 24, Avenue des Landais, 63177 Aubiere Cedex, France</s1>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194024 St. Petersburg, Russia</s1>
</fA14>
<fA20>
<s1>1223-1238</s1>
</fA20>
<fA21>
<s1>1999-08</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1185</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 1999 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>99-0384996</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physics of the solid state</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Recent theoretical and experimental work on linear exciton-light coupling in single and coupled semiconductor microcavities is reviewed: emphasis is given to angular dispersion and polarization effects in the strong-coupling regime, where cavity-polariton states are formed. The theoretical formulation is based on semiclassical theory. The energy of single-cavity modes is determined by the Fabry-Perot frequency ω
<sub>c</sub>
as well as by the center of the stop band ω
<sub>s</sub>
of the dielectric mirrors; the phase delay in the dielectric mirrors carries a nontrivial angle- and polarization dependence. The polarization splitting of cavity modes depends on the mismatch between ω
<sub>c</sub>
and ω
<sub>s</sub>
, and increases with internal angle as sin
<sup>2</sup>
θ
<sub>eff</sub>
. Interaction between the cavity mode and quantum-well (QW) excitons is described at each angle by a two-oscillator model, whose parameters are expressed in terms of microscopic quantities. Weak and strong coupling regimes and the formation of cavity polaritons are described. Comparison with experimental results on a GaAs-based cavity with In
<sub>0.13</sub>
Ga
<sub>0.87</sub>
As QWs shows that a quantitative understanding of polariton dispersion and polarization splitting has been achieved. Coupling of two identical cavities thorugh a central dielectric mirror induces an optical splitting between symmetric and antisymmetric modes. When QW excitons are embedded in both cavities at antinode positions, the system behaves as four coupled oscillators, leading to a splitting of otherwise degenerate exciton states and to separate anticrossing of symmetric and antisymmetric modes. These features are confirmed by experimental results on coupled GaAs cavities with In
<sub>0.06</sub>
Ga
<sub>0.94</sub>
As QWs. An analysis of reflectivity lineshapes requires the inclusion of the effect of resonance narrowing of cavity polaritons. Finally, the polarization splitting in a coupled cavity depends both on the single-cavity factors and on the angle- and polarization dependence of the optical coupling between the cavities. Inclusion of all these effects provides a good description of the experimental findings. © 1999 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70A36</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70A35</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70C20M</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70C20D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7866F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7136</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7135</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7320M</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7320D</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Etude théorique</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Theoretical study</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Polarisation optique</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Optical polarization</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Polariton</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Polaritons</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Exciton</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Excitons</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Puits quantique semiconducteur</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Semiconductor quantum wells</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Article synthèse</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Reviews</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Miroir</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Mirrors</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Résonateur cavité</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Cavity resonators</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Facteur réflexion</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Reflectivity</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Largeur raie</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Line widths</s0>
</fC03>
<fN21>
<s1>242</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>9933M001159</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C71 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000C71 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:99-0384996
   |texte=   Cavity-polariton dispersion and polarization splitting in single and coupled semiconductor microcavities
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024